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ABSTRACT 

We investigate the effects of H-dibaryons on the structure of neutron stars. We find 

that H-particks could be present in neutron stars for a wide range of dibaryon masses. The 

appearance of dibaryons softens the equation of state, lowers the maximum neutron star 

mass, and affects the transport properties of dense matter. We constrain the parameter 

space for dibaryons by requiring that a 1.44 MO neutron star be gravitationally stable. 
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The existence of long-lived (or even stable) six-quark states with baryon number 2 wss 

first proposed by .7&e’ on the basis of bag .mcde! considerations; experimental searches 
. 

for them are being actively pursued,’ with one recent report of a positive detecti0n.s Of 

the possible dibaryon states, the H-particle, with the quark content of two A’s (uuddss) 

in a flavor-singlet spin-zero state (Jp = O+), is the best candidate for met&ability. Bag, 

Skyrme, quark cluster, and lattice QCD model calculations predict a mass for the H- 

dibaryon in the range ma = 2.1- 2.24 GeV, with most models indicating a value 20 - 80 

MeV below that of two A’s (2m~ = 2.231 GeV).’ In this case, the H-particle would be 

stable with respect to the strong force, decaying only via weak interactions. 

Dibaryons will be present in neutron stars whenever the chemical potential of neutron 

star matter is greater than the effective msss of the dibaryon. Since they are bosons, like 

pions and kaons, dibaryons can, in principle, condense in the cores of neutron stars, bat 

with one important difference: dlbaryons carry baryon number. If dibaryon interactions 

are neglected, a Bose condensate of dibaryons would cause the collapse of neutron stars 

with central densities higher than the minimum density for the appearance of dibaryons.‘ 

At some level, however, such interactions must be present, and such an instability will 

not be realized. At very short distances, the interactions among the underlying quark 

components of the dlbaryons will give rise to an effective repulsive interaction between 

dibaryons. Even a very small self-coupling can stabilize the system against collapse. If 

the interactions are relatively weak, however, the equation of state of dense matter will 

be softened by the presence of dibaryons. 

At a critical baryon number density, nn 2 n;, dibaryons begin to appear inside neu- 

tron stars. We study this transition by considering a mixture of neutrons and dibaryons in 

chemical equilibrium. (For self-consistency, we should also include protons, As, and other 

light hyperons, but this does not qualitatively change the results for the parameter range 

of intere6t.s) In equilibrium, the chemical potentials of dibaryons (pa) and neutrons (h) 
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are related by 

pll = %v (1) 

Of the many candidate equations of state for neutron matter, we choose the medium- 

stiffness Bethe-Johnson’ (BJI) model as a representative and analytically tractable ex- 

ample. (Clearly, it would be of interest to make a systematic study with different nuclear 

equations of state; here, we have chosen a familiar model to qualitatively illustrate the 

effects of dibaryons.) In its polytropic incarnation, we can write the energy per neutron 

a5 

c, = fi = m, + 23&f, MeV, 
n, (2) 

where the neutron number density n,, is given in fm-‘, tn., is the neutron mass in McV, 

and a = 1.34. The neutron pressure and chemical potential can be written M: 

a&- pn = nadn, - = 363.44ni+:+‘MeV fin-‘, 

/A,, = m,, + 599.44ni MeV. (4) 

The adiabatic index is then I’,, = a t 1 = 2.54. 

We shall a55ume that the H-dibaryon is spatially compact, with a size comparable to 

that of nucleon5. This as5umption is borne out by bag model estimates’ and corroborated 

by a recent study’ of the quark rtructure of the H-particle. Then, at the nudeon level, 

in nuclear mean field theory, the H-particle can be modelled a5 a complex scalar field, 4, 

with effective Lagrangian‘: 

L, = +8&4f - $4t4 - 34f4,J - V[(4’4)“] - Lid, 

where n 2 3 describe5 higher order multi-body interactions, and Lid include5 the coupling 

to other hadrons. In mean field theory, the primary effect of the H interaction with 

nucteons is to induce a shift ma ---) m;l in the effective H-mass, due to the mean field 

of the neutrons. Although density dependent, to first approximation we can absorb this 

effect in a mean renormalized mass for H; for simplicity, we will denote this effective 
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mass by mH hereafter, As a first approach to modeliing the dibaryons that is simple but 

qualitatively reliable, we will neglect the higher order self-interactions between dibaryons. 

(These terms may be important at high densities, but in that regime the description of 

the EOS in terms of nucleons is suspect at any rate.) 

We can estimate the dibaryon self-coupling X by using a variant of the P-matrix 

formalism of Jaffe and Low,‘O applied to diquarks by Donoghue and Sateesh.” If we 

consider two dibaryons brought together, the energy of the resulting configuration can be 

written as El = 2m~+AE(+, X), where r is their separation. As r -t &, Ea + M,, where 

hf. and & are the mass and radius of the Ill-quark baryon number-4 state. The mass 

MI can be estimated from the bag model,’ MI - - 4.7 CeV. Calculating the interaction 

energy for the two-dibaryon state confined inside a cavity of radius R, we find that” 

E;JR,A) = 0.34X/4EaP, where E’ = p” t rn; and the momentum p = r/R from the 

vanishing of 4 at the cavity boundary. Taking the cavity to be the size of the baryon 

number-4 state, R = &, and equating AE(&,A) = Ei,(&,X), we obtain 

For the range & = 1.1 - 1.4 fm and rnx = 2 - 2.2 GeV, we estimate X N (3.4 - 13) x IO’. 

Given the crudeness of the approximations involved, this estimate should be considered 

a guide to the expected order of magnitude for the coupling. 

Since the self-coupling X lies comfortably above a critical value x’ = 4vm~/m$, 

N 4 x 10-J’, we can use the equation of state for self-interacting bosons derived by 

Colpi, Shapiro, and Wasserman la to excellent approximation (corrections are of order 

0(X*/A) N lo-‘a). For a spherically symmetric scalar field with time-independent energy- 

momentum tensor, the lowest energy solution is of the form 

4(f, t) = ‘P(r)e-‘“’ , 

where Q(r) is a real function of the radial coordinate. In the limit A B X’, the solution 
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to the scalar field equation of motion to lowest order in X*/X is just 

w= 
( ) 

113 ip=.E --I 
AVZ ,a 

for r<R, (8) 

where R denotes the radius of the configuration. I3 The dibaryon equation of state is 

obtained by substituting this solution into the scalar field energy-momentum tensor, 

T,’ = $J- (8&4 t e,4a,4t) - ; [.9%4th4 + 77&4t4 + $4t413] (9) 

and the H-particle current 

J’ = + (&“4 - 48”4t> . (10) 

Defining the dimensionless parameter z = w’/m ‘, the dibaryon energy density and pres- 

sure are-then given by: 

PB = Po(Z - 1)(32 t 11, 01) 

PB = po(2 - l)‘, 02) 

where 

po = mi/4X = 523s ma 
’ 10’ 

2000 I&V x ’ )( > 

The parameter z is related to the baryon number density of dibaryons by: 

nB=2nB’- z 8p”( -1)Jr. 
mi 

03) 

(Thus, z -B 1 as the dibaryon density goes to zero.) This specifies the dibaryon equation 

of state in ~ametrised form. (Alternatively, elim+ting I, the equation of state can 

be written” pa = (4p0/9)[(1 + 3pa/4po) ‘1’ - I]‘.) We can then calculate the dibaryon 

chemical potential: 

Ira = Plf+P~ = WIJEI 
nxi 

and the adiabatic index 

(15) 

ra = PR + PE dprr 

c-1 

41 

PR dpa =-’ 32 - 1 
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At low density (no + 0), l’~ -+ 2, and at high density (p 2 po) r~ -+ 4/3; the latter 

reflects the fact that the dibaryon EOS reduces to that of a free relativistic gas in the 

high density limit. Since r~ < l’,, dibaryons generally soften the equation of state. 

Imposing chemical equilibrium between neutrons and dibaryons, we find that the 

threshold baryon number density for the appearance of dibaryons is: 

. ma -2m, 
> 

‘Ia h-s = o.45 fm-3 ma - 2% 
nB = 2m.4 - 2m, > 

“O. 
1198.88MeV (17) 

This threshq is independent of the self-coupling X. For ma 2 2mr, the threshold baryon 

density for the appearance of H-particles is about three times nuclear matter density. 

For densities above nk, the equation of state will be that of a neutron-dibaryon mix- 

ture: 

nB=n,+Nf, 

P = Pn + Pal 

PB = (P + Ph = PdP). 08) 

Imposing chemical equilibrium, the system can be described with one parameter, for 

example the neutron density n,,. 

We have constructed models of neutron stars by integrating the Oppenheimer-Volkoff 

equation of hydrostatic equilibrium using the above equation of state. The effect of the 

appearance of dibaryons can be seen in Fig. 1, which shows the neutron star mass M vs. 

radius R for models with (solid curve) and without dibaryons (dashed curve). For this 

choice of parameters, ma = 2200 MeV and X = 8000, the maximum neutron star mass is 

reduced when dibaryons are included, a consequence of the softening of the equation of 

state. 

In Fig. 2, we plot the neutron star mass threshold for dibaryons to be present: a 

neutron star with BJl equation of state and a ma55 above the threshold will have an 



admixture of dibaryons in its core. Note that dibaryons are present in stars of mass 

1.44~~ for a wide range of H-particle masses. In particular, even if the H is unstable 

(ma > 2mA), it seems to be welcome. 

The dependence of the neutron star maximum mass on the dibaryon mass and coupling 

constant is shown in Fig. 3. The constraint that the maximum neutron star mass exceed 

l.44M0, the mass of the binary pulsar *’ PSR1913+16, implies a lower bound on the 

strength of dibaryon interactions (.X) f or a given dibaryon mass. In Fig. 4, we show this 

constraint on the dibaryon parameter space for the neutron-dibaryon model. Interestingly, 

this lower bound on ), as a function of rn~ is dose to the bag model estimate of )1, Eqn.(G). 

We also note that if ma < 2m,, = 1879 MeV, then “dibaryon matter” would be absolutely 

stable at zero pressure; in this case, dibaryons would form ‘boson stars’s’ (perhaps with 

a small crust of nuclear matter) with maximum mass A&. = 0.22(X/~*)“‘m~/ma = 

1.44M&/2.8 x 19s)s~s(2m&s~)‘. 

Aside from their effecta on neutron star rtructure, dibaryonr may also have impor- 

tant consequences for the transport and cooling properties of neutron atam. Since they 

are a non-ideal Bose gas, the low-lying excitations will have a phonon spectrum, and 

the dibaryons will presum.ably act as a superfluid. In fact, one can demonstrate this di- 

rectly by considering the spectrum of rmaD fluctuations” about the solution (7). Also, 

since they are not PauLblocked, neutrino emission horn H-H and H-n scattering may be 

considerably enhanced over the modified URCA process, thereby accelerating the early 
., 

stages of neutron star cooling. We conclude that dibaryons could play an important role 

in neutron rtu physics. 

Part of this work was completed while two of us (J.F. and A.O.) were visitors at 

the Copernicus Astronomical Center in May 1990; we thank the Center for its warm 

hospitality. J.F. and A.O. acknowledge support from the DOE and NASA (through grant 

NAGW-1340) at Fermilab, and A.O. from NSF (Grant AST-22595) and DOE (grant 

DEFG02-90ER40606) at the University of Chicago. 
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FIGURE CAPTIONS 

Figure 1. Gravitational mass M versus stellar radius R for BJl equation of state 

(solid curve) and for BJl with dibaryons of mass ma = 2200MeV and self-coupling 

X = 8000 (dashed curve). 

Figure 2. Threshold neutron star mass above which dibaryons appear, as a function 

of dibaryon mass. 

Figure 3. Maximum neutron star mass as a function of X for ma = 2000,2100,2200, 

2300 MeV. The horizontal line at 1.44Mo denotes the mass of the binary pulsar. 

Figure 4. Minimum value of X required for stability of a 1.44& neutron star, 

&im/lOOO, as a function of H-mass rns. 
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